
GUIDE (FileCatalyst)

Accelerating File Transfers

https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 2

Introduction 3

Introduction to FileCatalyst 3

Understanding TCP 3

The Pitfalls of TCP When Transferring Large Data Sets 3

Latency and How It Affects TCP 3

Packet Loss and Its Effect on TCP 5

The Pitfalls of Common TCP-Based Protocols 5

Optimizing TCP 6

Available Solutions 6

FTP/SFTP/FTPS Server 6

Email 6

Cloud Services/Digital Delivery 7

Shipping Physical Media 7

 Common Drawbacks of Physical Media: 7

FileCatalyst’s Acceleration Features 7

Congestion Control 8

 No Congestion Control 8

 RTT-Based 8

 Loss-Based 9

Multi-Client File Transfers 9

Compression 9

Incremental Transfers 9

Progressive Transfers 9

FileCatalyst and the Competition 10

Open Source 10

FileCatalyst Security 11

Required Ports – without Reverse Proxy 11

Required Ports – with Reverse Proxy 12

Minimizing Port Usage 13

Encryption 13

SSL Cipher Restrictions 13

IP Filters 13

Login Security 13

HIPAA Security Compliances 13

Penetration Testing 14

File Transfer Acceleration Scenarios 14

Scenario 1 – Small to Medium Enterprise (SME) 14

 Profile – Performing Large File Transfers 14

Table of Contents

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 3

As file sizes continue to grow, managing and delivering large files

is becoming an important consideration for organizations of all

sizes. Companies have abandoned the commonly used FTP/TCP

protocol as a delivery method in favor of alternative file transfer

solutions which provide acceleration, reliability, management,

and security.

Companies seeking file transfer acceleration are not limited

to the high-tech sector. Organizations leveraging the benefits

of acceleration are found in sectors such as media and

entertainment, natural resources, supercomputing, legal, health,

government, financial, manufacturing, and more. Companies

using TCP-based file transfer protocols to transfer large data sets

may experience slow file transfers, or even failed and/or corrupt

file transfers. This failure rate can be detrimental to organizations

moving large data sets on a regular basis. This wastes valuable

time, especially if these transfers take hours across an otherwise

healthy network.

This white paper will address some of the issues organizations

encounter when using TCP-based protocols. It will also outline

some other common file sharing methods, and the issues

inherent with each. It will then outline how the FileCatalyst

solutions, and how they overcome the issues surrounding slow

file transfers.

Finally, this paper will present a number of scenarios that

showcase the advantages of switching to an accelerated file

delivery system, such as FileCatalyst, that includes reliability,

security, automation, and tracking.

Introduction to FileCatalyst
FileCatalyst is a software platform designed to accelerate and

manage file transfers securely and reliably. FileCatalyst is immune

to the effects of latency and packet loss impacting traditional file

transfer methods like FTP, HTTP, or CIFS. Global organizations are

now using FileCatalyst to address file transfer needs, including

content distribution, file sharing, and offsite backups.

Understanding TCP
The Transmission Control Protocol (TCP), in conjunction with

 the Internet Protocol (IP), is the basic framework and set of

rules that define the internet and how data is sent and received.

TCP is also the framework used by all the common internet

protocols, including FTP, SFTP, HTTP, SCP, CIFS, and SMTP.

TCP is a connection-oriented protocol; meaning that it establishes

a connection between applications at each end. TCP sends and

receives packets across a network between each endpoint.

TCP can break application data into packets that are easier

to manage and send across a network. The packets are then

numbered and sent in groups. The biggest advantages of TCP

are stateful connections, guaranteed packet arrival, and built-in

network congestion control.

Although TCP benefits from these advantages (and all the

commonly-used internet protocols associated with it), there are

some glaring disadvantages—especially with bulk data transfers

over IP links where latency and/or packet loss are present.

The Pitfalls of TCP When Transferring
Large Data

Latency and How It Affects TCP

To reliably transfer data across a network via TCP, the receiving

party must send an acknowledgment (ACK) to the sending party

confirming the packet was received. These ACKs must be sent

in sequential order, and the sender cannot send another packet

of data until it receives an acknowledgment that the previous

packet was received. The time spent sending a packet and

receiving the ACK is measured as Round-Trip Time (RTT). This

is one of the reasons TCP can be slow: time is spent waiting for

ACKs instead of transmitting data.

On local networks with computers sending and receiving data

in close proximity to each other, ACKs spend less time in flight

and do not slow down the data transmission. However, as the

geographic distance increases, so does the RTT. The slower ACK

reception causes an exponential throughput degradation for

bulk data transfers.

TCP responds to this by adjusting the acceptable amount of

unacknowledged data allowed on the link. If the acceptable

amount is surpassed, the transfer will stop and wait for an ACK.

The optimal amount of unacknowledged data en route should

equal the end-to-end bandwidth, multiplied by the RTT. This

sum is known as the bandwidth-delay product.

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 4

TCP perpetually estimates this value and sets a “TCP window.” When the bandwidth-delay product exceeds the TCP window, the result

is “dead air,” which creates even more wait time. Some satellite connections must deal with hundreds, or even thousands, of milliseconds

of RTT.

Image 1: Bandwidth Delay Product

Image 2: The Effects of Latency on TCP

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 5

Packet Loss and Its Effect on TCP
Network congestion typically causes buffer overflow on routers

that are unable to handle a large amount of congestion placed

on them. A router experiences buffer overflow when it does not

have the capacity to accept all the incoming packets. This causes

packet loss.

TCP cannot distinguish between packet loss caused by network

congestion, and congestion caused by interference in wireless or

satellite networks. Physical structures in the “route” of a wireless

or satellite connection cause interference, and ultimately packet

loss. TCP will cut the TCP window in half when packet loss is

detected, which is too aggressive when inherent interference is

present. The ideal solution should be able to react to congestion

in a less aggressive manner.

The Pitfalls of Common TCP-Based Protocols
Speed constraints are not the only issues associated with TCP-

based protocols. Some of the limitations and disadvantages

include:

• HTTP: HTTP transfers have a size limit of approximately

2 GB. The file is placed on the computer’s memory during a

transfer. The larger the file, the more resource intensive the

file transfer becomes.

• FTP: FTP does not use encryption by default when

transferring files. Alternatively, FTP can be secured by using

the SSL (Secure Sockets Layer) or SFTP protocols. Both SSL

and SFTP are inherently secure.

Image 3: The Effects of Packet Loss on TCP

• Bandwidth Prioritization: FTP (or any other TCP-based file

transfer protocol) does not give users the ability to adjust

bandwidth in order to speed up or slow down occurring file

transfers.

• Integrity Checking: Many TCP-based protocols do not check

the integrity of a file after it is transferred.

• SMTP: Size limits are commonly placed on SMTP transfers.

This is not practical for sharing large files. If you are using

your own individual mail server, however, the limits can be

adjusted.

• Blind Resuming: When a file is paused and resumes, most

TCP-based protocols will blindly append the file with no

checks, sometimes resulting in a corrupt file. incomplete

transfers.

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 6

Optimizing TCP
TCP makes use of two buffers referred to as "windows" to

perform transfers: the congestion window on the sender

machine and the receive window on the receiver machine.

The congestion window is scaled up and down by the sender

in reaction to packet loss. On clean links with little to no loss,

the window can quickly scale to its maximum value. However,

on lossy links, the window will quickly lower itself to reduce

the re-transmission of redundant data. This is referred to as

“congestion control.” The size of the receive window determines

how much data the receiving machine can accept at one time

before sending an acknowledging receipt back to the sender.

When a TCP connection is established, the window sizes are

negotiated based on the settings on each machine. The lower

value between the two machines will determine the size of the

congestion window.

To optimize TCP performance, you must increase the value of

the TCP windows¹. The congestion window must be configured

on the sender side, and the receive window must be configured

on the receiver side. The congestion window should be tuned

to maximize the inflight data and reduce the “dead air” on your

link. The amount of in-flight data needed to maximize the link is

called the bandwidth-delay product. The receive window should

be increased to match the size of the congestion window on the

sending machine.

Although tuning TCP can yield increased transfer rates, it can

also create problems on networks containing packet loss. A single

dropped packet will invalidate the TCP windows. When this occurs,

the entire block is re-transmitted, substantially lowering the

throughput of TCP transfers with large window sizes. Another

possible issue is that tuning TCP for high speed transfers may

reduce speeds for everyday usage such as email and web

browsing.

Changing the window sizes can be a complicated process.

Increasing the TCP window size involves changing configurations

on both the receiving and sending parties of the transfer. This is

less than ideal for environments containing multiple endpoints.

On Linux-based systems, administrators must manually edit the

system config files. On Windows-based systems, the registry

settings must be updated. In both cases, administrative

privileges will be required. Once the window sizes are increased,

the optimization may be marginal. At high speeds (greater than 1

Gbps) several concurrent flows will typically be required to achieve

full link capacity. With high RTT (> 50ms), 10 or more streams may

be required to achieve 1 Gbps. Using this method to reach 10

Gbps or higher may require 100 or more streams, creating a strain

on CPU resources.

Available Solutions
Since TCP is the backbone of many existing transfer processes,

most file transfer solutions are based on TCP. These options

are suited for transfer scenarios that occur spontaneously and

infrequently. Some TCP-based solutions include:

FTP/SFTP/FTPS Server
Some organizations host their own FTP servers to provide their

own file transfer service. This can be beneficial, but there several

considerations when deploying your own server.

When sending files across the public internet, an organization’s

FTP server should have special security measures in place,

including SSL protection for FTPS.

Even after the FTP server is deployed and configured (which takes

skilled and experienced IT staff), the transfer is still performed via

TCP. All the bottlenecks inherent to TCP still apply to the FTP server.

The FTP server may be able to perform file transfers, but it may

lack many features included with other commercial MFT

(Managed File Transfer) solutions. The drawbacks of an in-house

FTP server include:

• Lack of tracking and reporting

• No email notifications for completed file transfers

• No MD5 checksum

• Unreliable resume and restart features

• No file delta capabilities

• Inability to transfer directly from the web browser

Email
In home and enterprise scenarios, email attachments can serve

as an easy way to deliver files. Even though email is a common

method, there are some limitations to consider, especially for

enterprise applications:

• File Size Limitations: Email servers are configured to handle

attachments of a certain size. Files that exceed the maximum

size limit will be “bounced.”

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 7

• Archival Storage Costs: Emails sent within an organization are

archived on a mail server. This means that every sent attachment

is archived, thus taking up space on the server. These archived

attachments may greatly increase IT storage costs.

• Poor Network Utilization: Emails rely on the Simple Mail

Transfer Protocol (SMTP). This protocol is built on TCP, so all the

inherent issues of TCP are present.

Cloud Services/Digital Delivery
Cloud services such as Dropbox, Hightail and others have recently

become popular methods for transmitting large amounts of

data. These services are relatively easy to use and scalable, but

they also have drawbacks. With cloud-based transfers, the sender

must upload the file(s) to the cloud, and then the receiver must

download the file(s) from the cloud as a separate step after the

initial upload is complete. Since cloud-based solutions use the

internet, they also suffer from the limitations inherent to TCP.

Sending structured folders containing a large number of files can

be difficult via cloud services because cloud services use basic

HTTP upload tools to move files. It is difficult to move complex

directory structures without first zipping the payload into a

single archive. Most web-based HTTP upload tools used by cloud

services have a limit of 2-5 GB per file.

Even with all the limitations of digital delivery methods, a digital

delivery solution is still the ideal solution when file sizes are under

2 GB. However, for a cloud solution to be truly complete, it should

overcome the issues of speed caused by packet loss and latency

as well as work with files of any size.

The ideal solution should accelerate file transfers and maximize

the already existinginfrastructure. It should also be easy to

implement and—most importantly—easy to use.

Shipping Physical Media
Rather than deploying a transfer acceleration technology, some

companies use physical storage as a means of delivering data.

Physical mediums include tape storage, hard drives, flash drives

and DVD/Blu Ray disks.

Amazon Web Services (AWS) offers a service that physically ships

storage called a “Snowball.” A large hard drive is shipped to the

user’s location where they copy their data to the drive. Amazon

then picks up the Snowball and ships it to the user’s desired

location.

Shipping and archiving large data sets via physical storage can

work on an occasional basis, but this is not an easily scalable

method. The time it takes to copy and ship the data, along with

the expense of shipping, can generate high costs and inefficiency.

Common Drawbacks of Physical Media:
• Preparation Time: Storing and shipping data requires

physical human interaction; from copying the data to printing

out mailing labels and shipping. Where there is human

interaction, there is also the potential for human error.

• Cost: Depending on the frequency and urgency, costs for

using a courier service can easily add up.

• Delivery Time: Shipping physical media may take up to 5

business days or longer, depending on the destination.

FileCatalyst Acceleration Features
The User Datagram Protocol (UDP) can draw more performance

from an IP network than TCP by omitting some of the features

included with TCP. UDP is a "connectionless" protocol, meaning

it does not depend on sequenced acknowledgments. Without

acknowledgements, transfers have the potential to become

unreliable where there is any form of packet loss.

FileCatalyst’s core transport technology is based on the UDP

protocol, which provides a mechanism by which data can be

transmitted at precise rates. Files can be transferred via the UDP

protocol without being impeded by network impairments such

as latency and packet loss. UDP alone, however, doesn’t have a

way of recovering lost packets. In the past, there was no way to

take advantage of the UDP protocol for reliable transfers over a

network with impairments. FileCatalyst adds the reliability and

rate control features missing from UDP, without sacrificing the

desirable properties of UDP.

Like TCP, FileCatalyst also breaks data into blocks. The major

difference between FileCatalyst and TCP is that with FileCatalyst,

there is no delay while waiting to receive a block of data before

commencing subsequent blocks of data. Transmission is

initiated immediately, even if previous blocks have not yet been

acknowledged. Regardless of network latency, data transmission

remains constant with FileCatalyst, enabling transfers to occur at

full line speed.

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 8

Congestion Control
Congestion control allows FileCatalyst to adapt to changing

network conditions, ensuring that the transmission remains

optimal and avoids congestion collapse. FileCatalyst provides

three modes of congestion control: no congestion control, RTT-

based, and loss-based, which is the default setting.

No Congestion Control
This setting allows users to send data as fast as possible with

only minimal background traffic checks. This option is excellent

for dedicated links or links configured via Software-Defined

Networking (SDN) which is specific for file delivery tasks.

RTT-Based
“RTT-based” congestion control establishes a baseline average

RTT before the data starts to flow. Once the transmission begins,

RTT is continuously monitored. While the RTT stays within a

certain range of the baseline RTT, the speed of the transfer will

increase. Once the RTT begins to go above a certain threshold,

the speed is decreased. How much the RTT can spike above

the baseline average is controlled by the congestion control

aggression setting provided by FileCatalyst.

This type of congestion control is suited for wireless or satellite

links where there is packet loss from sources other than

congestion. TCP will slow down, for example, when a packet is

lost due to interference. When FileCatalyst is using the RTT-based

congestion control, it ignores individual packet losses

and focuses only on RTT.

Loss-Based
There are circumstances in which RTT-based congestion control

may not work properly. For example, when a router's queue is

very small the RTT may never spike when congestion is present.

If the RTT remains low, FileCatalyst will continue to increase the

transmission rate, even when congestion is present. For these

scenarios, the only way to detect congestion is by monitoring

packet loss. As outlined previously, packet loss may come from

sources other than congestion, so this is best used on land-based

networks where packet loss is due to real congestion.

Loss-based congestion control reacts to packet loss by slowing

down, similar to TCP, but far less aggressively. TCP can be quite

aggressive in its congestion avoidance, which may underutilize

your link; FileCatalyst’s loss-based congestion control algorithm

FileCatalyst
File Acceleration

FileCatalyst
File Acceleration

Image 5: The Benefits of Transferring a 10 GB File on a 10 Gbps Connection Using FileCatalyst

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 9

was designed to maximize link utilization while still avoiding

congestion. Like RTT-based congestion control, the loss-based

congestion control mode aggression can be tuned.

Multi-Client File Transfers
The FileCatalyst protocol can transfer multiple files from a single

data source concurrently, letting an organization better optimize

their computing and network resources during a file transfer.

FileCatalyst’s Multi-Client feature can transfer multiple growing

files at once, as well as auto-archive smaller files into a single file,

thereby greatly increasing throughput on data sets containing

many small files.

Compression
Data compression is a general term referring to a technology that

can encode large files in order to reduce their size. Not all data can

be compressed, but compression can significantly shrink the size

of data that can be compressed—resulting in less information to

transfer. This method naturally results in a faster transfer.

Data compression applies an algorithm to the data which stores

repetitive bits of information as a “shorthand.” Once the shorthand

is sent, the receiving end uses a decoder tool that restores these

pieces back to their original state. After the decoding process is

complete, an identical copy of the original file is formed on the

receiving end.

Image 6: A Live Video Production Workflow Employing FileCatalyst’s Progressive File Transfer Features.

Incremental Transfers
In some scenarios, similar files may already exist on both sides

of the transfer, but changes may have been made to the file at

the source location. When a difference is detected, an algorithm

calculates the differences between the source and destination and

stores them as discrete files. These small delta files containing the

changes are then transferred to the destination.

Once the delta files are sent to the destination, the changes are

applied to the destination file as a “patch.” The patch updates the

destination file, resulting in an identical copy of the revised file. The

benefit is quite clear: sending a 4 MB delta instead of a 2 TB file is an

incredible difference.

Progressive Transfers
FileCatalyst can send files as they are being written on the disk. This

is very beneficial when the process of creating the final file takes

significant time.

Progressive transfers allow FileCatalyst to transfer a file as it is being

built by another application. This is especially beneficial for live video

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 10

production workflows, when the encoding process for a large

video file may take several hours to complete. Without FileCatalyst,

the transfer could not start until the encoding process is complete.

The progressive transfer feature, combined with concurrent and/

or multi-client transfers, allows FileCatalyst to transfer several

growing files at once. This feature also allows for auto-discovery

of new growing files in a predefined directory.

FileCatalyst and the Competition
FileCatalyst uses a patented proprietary User Datagram Protocol

(UDP) file transfer protocol which includes congestion control,

bandwidth throttling, incremental transfers, security features,

and real-time management.

FileCatalyst has been used for some of the largest sporting

events in the world to support television broadcast workflows.

FileCatalyst has been awarded two technology Emmy awards

(2015 and 2016) for their work in the industry. Under many

circumstances, FileCatalyst’s underlying technology is faster,

more flexible, and more reliable than competing solutions.

Independent research from Anhalt University in Germany

shows that FileCatalyst is the fastest and most reliable protocol

for networks containing latency and packet loss². The study

tested multiple commercial vendors including ExpeDat (Data

Expedition), Tixel (TIXStream), Catapult, Velocity, and FileCatalyst.

During the tests, FileCatalyst Direct was the only solution able to

deliver full line speed.

Open Source
There are several open source projects that provide an accelerated

file transfer solution via UDP. Some solutions are more mature

than others, and they all use different technologies to solve the

same problem.

Some commercial solutions that claim to use UDP acceleration

have simply integrated an open source project into their core

file transfer technology. These solutions inherit the strengths,

but also the weaknesses, of the open source project they

leverage. FileCatalyst has developed and patented a UDP-based

protocol that does not use any code from any open source UDP

technology.

One common problem with these open source solutions is their

lack of a Graphical User Interface (GUI). Some provide only a bare-

bones sender/receiver Application Programming Interface (API),

meaning that the end user must compile from the source. Other

solutions mayonly come with a Command Line Interface (CLI).

Another common problem with open source solutions is the

lack of checkpoint restarting and automatic MD5 checksum

verification. This doesn’t allow file transfers to resume

automatically if the link temporarily fails, which can potentially

lead to corrupt file transfers. A lack of firewall traversal support

through a reverse/forward proxy is also common with open

source solutions. While this is not an issue for internal transfers,

most organizations send files over the WAN, which will almost

certainly have at least one firewall somewhere on the route.

 Image 7: Data Rate Speed Test Between TIXStream, FileCatalyst Direct, and Expedat

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 11

Most open source solutions do not fare well in network

conditions where packet loss or high latency is present. Finally,

the congestion control options included in open source

UDP-based solutions do not adapt to ever-changing network

conditions.

FileCatalyst Security
FileCatalyst Server requires one TCP port (default 21) to

be open to inbound traffic in order to establish a control

connection. The client, or connecting system, uses a short-

lived port that’s allocated automatically from a range

predefined by the IP stack software. This is usually called an

“ephemeral port,” and is used as the source port to establish

the control connection. Ephemeral ports typically range

from port 1024 to 4999. The control connection is used to

perform authentications via a username and password, share

information regarding available files/directories on the server,

and to negotiate protocols/ports for data transfers.

Establishing data connections, depending on your settings,

requires specific TCP and/or UDP ports to be open for

inbound/outbound traffic on the server side of the firewall,

as well as inbound/outbound ports on the client side.

FileCatalyst uses TCP for data connections when using “FTP

mode” for transfers, or when the client requires a directory

listing from the server. FileCatalyst uses UDP to transfer data

when in “UDP mode”. FileCatalyst Server defines the range

of ports used for data transfers. The default port range is

8000 to 8999. However, this range may be customized to an

organization’s needs.

When TCP connections are established, all connections are

outbound from the FileCatalyst client to the FileCatalyst

Server, regardless of the direction of the transfer. As with

control connections, the connecting system uses an

ephemeral port as its source port and will connect to a port in

the range as defined by the FileCatalyst Server.

FileCatalyst

FileCatalyst
FileCatalyst

FileCatalyst

FileCatalyst

Image 10: FileCatalyst DMZ Deployment without Reverse Proxy

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 12

FileCatalyst

FileCatalyst

FileCatalyst

FileCatalyst

FileCatalyst

FileCatalyst

Image 11: FileCatalyst DMZ Deployment with Reverse Proxy

When UDP mode is used for uploads, the source and destination

ports are in the same range (default 8000-8999). This means that

the client side must allow outgoing UDP—and the server must

allow incoming UDP—on all ports in the defined range.

When UDP is used to download, the source port range is defined

by the server and the destination port range is defined by the

client. The default client-side port is 0, meaning that the client

will pick any open port. FileCatalyst uses a firewall hole punching

mechanism (similar to Skype) that performs a NAT traversal. If the

default values fail, or if others are required, the value may be set

to a specific incoming port. Firewalls and NAT devices may be set

accordingly.

Note that even when these ports are open on the firewall,

FileCatalyst does not listen for connections unless it has been

pre-negotiated by an existing FileCatalyst client. This mitigates

the risk of third parties attempting to establish un-authorized

communications with a FileCatalyst server or client.

In the scenario above, the Reverse Proxy server is deployed in

the Demilitarized Zone (DMZ)and facilitates the connectivity

between the FileCatalyst Direct Server, located on the secure

network, and the unsecured public internet. In this scenario,

the port connectivity between the internet and the DMZ

remains essentially the same as when not using a Reverse

Proxy. However, the connectivity between the Direct Server on

a secure network and the Reverse Proxy on the DMZ requires

only a single configurable outgoing port from the secure

network tothe DMZ. The maximum achievable file transfer

speed using a Reverse Proxy is 1 Gbps.

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 13

Minimizing Port Usage
Depending on the volume of concurrent client connections,

it may be desirable to fine tune the number of ports in the

data port range. One is required for every concurrent transfer

taking place on the server. Thus, a range of 8000-8999 could

potentially support up to 1000 concurrent transfers. If the

anticipated volume of concurrent transfers is known, the port

range can be adjusted.

FTP transfers on the Windows Operating System (OS) may

require additional ports to support higher transfer volumes.

The Windows OS does not release a closed TCP socket for up

to 3 minutes but rather places it in a CLOSE_WAIT state. The

consequence is that FTP transfers made up of several smaller

files will quickly exhaust ports. When using FTP for transfers

with a Windows-based FileCatalyst server, minimizing the data

port range should be done with caution. Linux and other UNIX

based operating systems do not suffer from this limitation.

Encryption
By default, the FileCatalyst TCP control connection and TCP/

UDP data connections do not use encryption. All control data is

text-based and sent in clear text, and should often be secured.

FileCatalyst Server provides mechanisms that secure both the

control and data connections. The TCP control connection and

TCP data connections (FTP mode) can be secured using SSL

(Secure Sockets Layer). When SSL is enabled, you must set the

connection mode to “FTPS/Implicit” in order to connect with a

third party FTP client.

By default, FileCatalyst generates self-signed certificates for

SSL communications. Valid Certificate Authority (CA) certificates

should be employed to prevent a MiM (Man in the Middle) attack.

FileCatalyst’s client and administration software provide options

for strict validation of the domain to which it is connecting.

If enabled, FileCatalyst will not connect if there is a domain

mismatch.

When transferring in UDP mode, you must enable the Advanced

Encryption Standard (AES)option for the data connection to

encrypt data. When enabled, FileCatalyst uses AES encryption to

ensure that intercepted data is useless to everyone except the

intended recipient. Since AES exchanges a shared encryption

key, you must also enable SSL to ensure the encryption key is not

intercepted. In addition, FileCatalyst rotates the AES key for every

new file in transit as an added measure of security.

By default, FileCatalyst uses 128-bit AES. However, a stronger

encryption may be enabled if your country permits it.

SSL Cipher Restrictions
FileCatalyst Server allows the selection of specific SSL ciphers,

which are considered appropriate for encrypted communication.

The entire Java SSL/TLS set is utilized by default. The ciphers

used can be modified (i.e.: enforce a minimum 128-bit

encryption cipher).

IP Filters
FileCatalyst provides an IP filter feature that allows administrators

to permit or deny specific IP addresses. Furthermore,

administrators can permit or deny entire ranges of IP addresses.

Connection attempts from IP addresses outside of the defined

rules will be dropped by FileCatalyst Server instantly.

Login Security
FileCatalyst Server provides mechanisms that block brute force

password attacks by automatically blocking the offending IP

address and/or disabling the compromised user account. This

feature may be enabled or disabled, and the administrator may

set the number of failed attempts that trigger the block.

HIPAA Security Compliances
FileCatalyst can ensure HIPAA compliance from a technical

standpoint by ensuring the following:

1. Access Control - The ability to access the system using user

accounts. Restrictions based on IP and authentication against

a directory can also help ensure access control.

2. Audit Controls - Every login is audited, and every event is

logged in the system. Full reports on file transfers are available

via FileCatalyst Central.

3. Integrity - FileCatalyst can ensure that data isn’t compromised

by performing MD5 Checksums on the files once complete.

If the checksum does not match, the file is deleted on the

destination side and re-sent.

4. Authentication - FileCatalyst can authenticate against a local

database or a directory service. When authenticating against a

directory service, no passwords are stored locally.

5. Transmission Security - FileCatalyst can use SSL and AES to

ensure transmission security.

6. Reverse Proxy - The ability to configure the FileCatalyst

Server on a secure corporate network using a Reverse Proxy,

https://www.fortra.com
https://www.fortra.com

Fortra Guide Accelerating File Transfers

Fortra.com Page 14

deployed on the unsecured DMZ network, is a common

deployment strategy for security-conscious organizations.

Penetration Testing
External parties have conducted penetration testing on

FileCatalyst products. The results are proprietary and cannot

be shared. However, all issues identified have been addressed.

Some of the public domain issues that have been identified and

resolved include:

1. POODLE

2. HeartBleed

FileCatalyst uses patched SSL libraries to solve these security

issues. Always maintain the latest version of Java to ensure that

newly discovered vulnerabilities are patched.

The use of Java Virtual Machine also eliminates several security

problems common with Native C Applications such as Memory

Corruption, Privilege Escalation, and Injection⁴.

File Transfer Acceleration Scenarios

Scenario 1 - Small to Medium Enterprise
(SME) Profile - Performing Large File Transfers
A company headquartered on the Eastern Coast of the USA

regularly sends and receives large files to and from India and

Australia. They currently rely on FTP as their main transfer

method, but they also ship physical media. They have recently

noticed that they aren’t able to take full advantage of their

connection. They currently use the following connection:

• 150 Mbps Bandwidth

Challenges - Bottlenecks Created By FTP
Since all their current file transfers utilize FTP, they can only

realize about 25% of their 150 Mbps connection. Not only is

their connection underutilized, but they also must deal with

the inherent issues of FTP including “dead air” and packet loss.

They even lost a contract due to a failed transfer.

Since they can only leverage 25% of their potential bandwidth,

they are wasting 75% of their annual costs.

Solution - FileCatalyst Direct
After deploying FileCatalyst, the company accelerated their file

transfers by 80%. Not only did they accelerate their connection

speed and maximize their productivity, but they were also able to

realize a return on their investment in less than a year and a half.

Scenario 2 - Multi-National Enterprise Profile
Globally Delivering Content
A large enterprise organization distributes and publishes news

content. They are headquartered in New York, with 4 branches:

Los Angeles, Berlin, Moscow, and London. Their editors are

Moscow, and most of the production and content creation

happens between Los Angeles and New York.

Challenges - Underutilization of the connection
Their 200 Mbps link is quite fast theoretically. The average latency

of pan-Pacific transfers is 200ms, with an average packet loss

rate of 1%. Under these conditions, FTP will only transfer at a top

speed of 490Kbps. If they can only get speeds of 490Kbps, they

are only using a mere 1% of the connection they are paying for.

Solution - FileCatalyst Server and HotFolder
The company sought out various solution providers and decided

to evaluate FileCatalyst. They installed FileCatalyst Server across

all 4 of their locations, as well as FileCatalyst HotFolder at every

location. Between every location and team project, a total of 42

nodes were set up to send and receive files.

Once the FileCatalyst Server and FileCatalyst HotFolder were

installed and configured, they noticed that they could leverage

FileCatalyst Central to manage and monitor every node from

a web browser. Administrators can monitor and manage all 42

nodes, monitor transfers and manage alerts, regardless of which

office they are located in.

They also realized that they could leverage FileCatalyst’s ability

to send large files through download links via email, allowing

them to easily distribute assets to their coworkers between

offices easily.

With FileCatalyst’s UDP-based acceleration solution, the transfer

speeds now reach near link speed. Production transfers that

formerly took a hundred minutes to deliver now take one minute.

https://www.fortra.com
https://www.fortra.com

Fortra Guide

Fortra.com

© Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective owners. (fta-fc-gd-1022-r1-79d)

About Fortra

Fortra is a cybersecurity company like no other. We're creating a simpler, stronger future for our
customers. Our trusted experts and portfolio of integrated, scalable solutions bring balance and

control to organizations around the world. We’re the positive changemakers and your relentless ally
to provide peace of mind through every step of your cybersecurity journey. Learn more at fortra.com.

Fortra.com

© Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective owners. (fta-fc-gd-1022-r1-79d)

About Fortra

Fortra is a cybersecurity company like no other. We're creating a simpler, stronger future for our
customers. Our trusted experts and portfolio of integrated, scalable solutions bring balance and

control to organizations around the world. We’re the positive changemakers and your relentless ally
to provide peace of mind through every step of your cybersecurity journey. Learn more at fortra.com.

Accelerating File Transfers

Scenario 3 - Cloud Profile Migrating Data
to the Cloud
A research and development firm headquartered in San Diego

assessed options for migratingtheir large archive into the cloud

for easier remote collaboration.

They have Amazon Web Services (AWS) storage in both Europe

and Asia, and want to migrate their data sets to these locations.

Not only do they want to migrate their archived backups to the

cloud, but they also want to perform backups on a weekly basis.

Challenges - Slow Upload Speeds
They initially began the cloud migration without acceleration,

relying on the basic TCP/FTP method to transfer their archive.

The initial command line tool provided by AWS had very slow

throughput when transferring from San Diego to Europe and

Asia. The process was deemed an unacceptably slow and

ineffective process.

They considered using Amazon Snowball, by which a large drive

is shipped to the HQ to have the data copied onto a physical

drive and shipped by Amazon to their offices and uploaded

 to the cloud.

Solution - FileCatalyst Direct and HotFolder
The company chose to evaluate FileCatalyst. The installation

process included an instance of FileCatalyst Server in Amazon’s

Elastic Compute Cloud (EC2) hosting in EC2 on a Virtual Machine

(VM) in Europe and Asia. The servers were then connected to

their S3 storage in the respective regions. This immediately

yielded a speed increase of five times.

Not only was the speed increased, but they were also able

to leverage FileCatalyst HotFolder to sync files to the server

automatically. Now all the employees with HotFolder installed

always have access to the latest data in their cloud storage.

References
1. “TCP window scale option.”

https://www.ietf.org/rfc/rfc1323.txt Accessed 6 Sept. 2017.

2. Kachan, Dmitry, et al. “Comparison of Contemporary

Solutions for High-Speed Data Transport on WAN

10 Gbit/s Connections.” ThinkMind(TM) Digital

Library, 24 Mar. 2013, www.thinkmind.org/index.
php?view=article&articleid=icns_2013_2_40_10167.

Accessed 6 Sept. 2017.

3. IBM. “Big Data Technologies for Ultra-High-Speed

Data Transfer in Life Sciences.” IBM, IBM, 23 Dec.

2016, www-01.ibm. com/common/ssi/cgibin/

ssialias?htmlfid=ZZW03369USEN. Accessed 6 Sept. 2017.

4. “Is Java more Secure then C” October 5, 2015,

https://insights.sei.cmu.edu/sei_blog/2015/10/is-java-more-

secure-than-c.html Accessed Sept 26, 2017

https://fortra.com
https://www.fortra.com
https://www.fortra.com
https://www.fortra.com
https://www.ietf.org/rfc/rfc1323.txt
https://insights.sei.cmu.edu/blog/is-java-more-secure-than-c/
https://insights.sei.cmu.edu/blog/is-java-more-secure-than-c/

