
DATA CENTER PERFORMANCE GUIDE:

Four Ways to Do

More with Less

JOE STURONAS

CHIEF TECHNOLOGY OFFICER, PKWARE

2

Contents

LETTER FROM THE AUTHOR .. 3

INTRODUCTION:

Data Performance Guide: Four Ways To Do More With Less.. 4

1. EFFICIENT USE OF BANDWIDTH .. 5

Why is compression CPU intensive?.. 5

Compression in Hardware.. 5

zIIP Hardware Compression in File Transfer.. 7

zEDC Hardware Assisted Compression.. 8

zEDC Hardware Compression in File Transfer.. 9

2. IMPROVED DATA STORAGE .. 11

Application Integration.. 12

Archiving Best Practices. 12

3. EASE OF FILE MANAGEMENT .. 13

File Management Best Practices.. 14

4. EFFICIENT USE OF TRANSFER BETWEEN PLATFORMS 14

Interoperability Best Practices.. 14

SUMMARY . 15

z Performance Guide

3

z Performance Guide

Letter from the Author

As stewards of the information technology assets of our organization

we know there is constant pressure to improve performance, find more

efficient storage techniques and reduce costs. As CIOs, data center ad-

ministrators, infrastructure architects and application developers this

is often easier said than done.

The good news is that there is a steady stream of new performance

technologies that can help. Over the past few years IBM has released

some new capabilities that exploit several mainframe hardware facil-

ities to offload compression and free up general computing capacity

with the goal of reducing the total cost of computing. These are ex-

citing breakthroughs that provide 10x speed improvements that were

not previously possible. And we believe this changes the discussion

about how IBM’s mainframes can provide blazing speeds where fast

data throughput is required while also squeezing more cost out.

We highlight these new performance technologies and share input

from customer experiences in this data center performance guide.

The best practices and real-world use cases in the guide are meant

to spark some ideas that can help you get the most out of your data

center. No two data centers are the same. However, we’re hopeful this

guide will also act as a conversation starter on your unique perfor-

mance challenges.

JOE STURONAS CHIEF TECHNOLOGY OFFICER, PKWARE

joe.sturonas@pkware.com

4

z Performance Guide

DATA CENTER PERFORMANCE GUIDE:

Four Ways to Do More with Less

We recently surveyed our customers on ways to get the best perfor-

mance out of their data center environments. We got an earful! It

wasn’t a surprise that the most common theme in the data center was

optimization and reducing costs. At the same time, data center oper-

ators face substantial challenges like the surge in unstructured data.

Unstructured data counts for approximately 80% data center storage.

On top of that, constrictive Service Level Agreements (SLAs) must be

met while there are restrictions on further investments in infrastruc-

ture hardware and software.

Working with our customers, we’ve targeted four areas to help opti-

mize data center environments without taking on huge, new expen-

ditures or programs. The four areas are:

1. 	 Efficient use of bandwidth

2. 	 Improved data storage

3. 	 Ease of file management

4. 	 Efficient use of transfer between platforms

In this performance guide we will explore in detail the many ways that

we’ve worked with customers to get the most from their IBM® System

z® and data center environments.

5

z Performance Guide

1 Efficient Use of Bandwidth

Often the perception is that we live in a world with unlimited bandwidth. The reality in the data center is that, in
fact, we are bandwidth constrained. A chain is only as strong as its weakest link and in networking, bandwidth is
measured by the speed of the slowest hop. SLAs are measured against the end-to-end time it takes to deliver data
to customers, partners and constituents.

One primary strategy to free up bandwidth is to use data compression. Compressing data before it is sent to the
consuming application can greatly improve the efficiency of transferring data. However, because CPUs and storage
have become so fast, the time to compress data with CPU cycles far exceeds the time to transfer the data. As a
result, many mainframe shops have been reluctant to consider compressing data before transferring files due
to concerns over how compression counts against their general CPs. However, new software technologies and
architectures can now take advantage of special purpose engines and specialty PCIe cards making compression a
legitimate, nearly free resource, to open up bandwidth.

To explain why compression can be very CPU intensive,
consider an example of a simple data compression
technique known as Run-Length Encoding method. This
method works when repeating characters are evident in
a data stream. The run of characters is represented in a
compressed form as a single character with its count.

	 Example:	 B 2 2 2 2 E H H H H H H H H H

 Compressed:	 B 2*4 E H*9

However, to perform a thorough compression opera-
tion, more advanced algorithms and enhanced tech-
niques are required which work at the bit level and allow
for noncontiguous iterations of bit strings, such as the
Deflate compression algorithm, created by the PKWARE
founder Phil Katz.

The compression algorithm Deflate is able to achieve
significant compression ratios, in many cases around
90%, because it uses a sliding window dictionary. A
sliding window dictionary is constantly looking at the
input data, and works to improve the dictionary to find
the optimal replacement strings that will yield the best
compression ratios. This is why the Deflate compression
algorithm is so CPU intensive, but also why it produces
the best compression ratios, even when the profile of
the input data can change significantly from the begin-
ning of the file to the end of the file.

The opposite of Deflate is Inflate. Inflate is the reverse
process of replacing the tokens with the longer string
patterns and restoring the file to its original content and
size. The Inflate algorithm is very efficient and not very
CPU intensive because it is simply doing a lookup and
replace.

The ability to perform hardware compression on System
z has existed since the mid-90’s using the IBM Data
Compression Services through the assembler instruc-
tion CMPSC. The CMPSC compression facility is very
efficient and uses hardware that is built into all modern

System z mainframes. The CMPSC does not use the
Deflate compression algorithm, but instead uses a static
dictionary. Using a static dictionary for compression
is not CPU intensive at all, because it is not working to
improve the dictionary during the compression process

WHY IS COMPRESSION CPU INTENSIVE?

COMPRESSION IN HARDWARE

6

z Performance Guide

based on the input data. The downside of using static
dictionary compression is that the compression ratios
are on average going to be significantly less than using a
sliding window dictionary algorithm like Deflate, unless
the static dictionary is built specifically for the file it is
compressing.

CMPSC static dictionary compression can be effective if
a static dictionary can be built for an application profile
of datasets, such as log files that contain predictable
patterns of data. The specific static dictionary would
only be effective on that application profile of datasets,
but still most likely only capable of approximately a 70%
compression ratio, whereas Deflate might be capable of
a 90% compression ratio.

In 2006, IBM introduced the System z Integrated In-
formation Processor (zIIP) which was initially intended
to offload DB2 workloads, but has been expanded to
include other z/OS workloads allowed by IBM from other
ISVs. The zIIP is available on all IBM zEnterprise™, System
z10, and System z9 servers. It is designed to help free-up
general computing capacity and lower overall total cost
of computing for select data and transaction processing

workloads (FIGURE 1). IBM will not impose software
charges on zIIP capacity. Therefore, Using a zIIP engine
to perform Deflate compression can have dramatic
performance improvements in most circumstances.

You might be surprised that PKWARE’s PKZIP and Se-
cureZIP for z/OS (version 14 and higher) now support

the zIIP processor. PKZIP and SecureZIP for z/OS have
made compression and CRC (Cyclical Redundancy Check)
zIIP eligible. This means that when PKZIP and SecureZIP
for z/OS are compressing a file, approximately 90% of
the CPU workload is zIIP eligible and only 10% is pro-
cessed by the general CPs. Anytime that special purpose
engine can be used over the general purpose CPs, it is
like free processing. Once the initial cost of the special
purpose engine has been paid for, more processing can
be put on that engine, more CPs can be saved and more
costs that can be recovered.

The chart below (FIGURE 2) shows the relative comparison
benchmark between different applications that utilize
the zIIP hardware.

Ziip
Engine

FIGURE 1 	 1. Data Streams through the SecureZIP process.

	 2. Data is offloaded, encrypted and compressed

	 3. Results in compressed and encrypted data
	 without increasing mainframe capacity.

0

20

40

60

80

100

120

CPU

ELAPSED TIME

LEADING COMPETITOR SECUREZIP (SW)

Se
co

nd
s

2GB Binary File Running on zEV12 with zIIP

SECUREZIP (HW)

113

31

64

27

5

30

FIGURE 2

Compression Benchmark

Comparision

2GB BINARY FILE

RUNNING ON ZEV12 WITH ZIIP

7

z Performance Guide

The IBM zIIP special purpose engine can also have a
dramatic impact on storage and CPU time. The above
chart reflects a customer benchmark of compressing a
2GB file with PKZIP for z/OS with and without hardware
assistance for the compression operations. Without any
assistance from a zIIP engine, our customer observed
an elapsed time of 31 seconds and a CPU time of 27
seconds (all using the General CPs).

Compressing that same 2GB file using a zIIP special
purpose engine by making the Deflate compression
algorithm and CRC (Cyclical Redundancy Check) zIIP
eligible, PKZIP for z/OS v15 were able to reduce the total
general CP down to 5 seconds. That resulted in an 81%
reduction in chargeable CPU over the PKZIP and for z/OS
software based solution and a 92% improvement in CPU
time over the leading competitor.

ZIIP HARDWARE COMPRESSION IN FILE TRANSFER

Using a zIIP engine to perform compression can have
dramatic performance improvements in many circum-
stances. Another example is a customer running on a
z10-BC with 4 general CPs that were all knee capped
at about 25% of their total capacity each, totaling
about 731 MIPS and approximately the capacity of an
un-kneecapped uni. They were trying to move a 3GB
file on a nightly basis. They had to compress it because
the bandwidth to get the file to their partner was con-
strained at 1.5Mbps, which would take almost 5 hours if
it was uncompressed (FIGURE 3). They needed to get the
file moved in 3 hours.

The problem was that their general CPs were maxed out
at 100% during the batch window when this file needed
to be transferred. They did not have the capacity with
the general CPs to compress the data to 90% of its orig-

inal size so that the file could arrive at the partner in 30
minutes. This customer did have a zIIP special purpose
engine because it was used for DB2 DRDA during the
day, but the zIIP was hardly utilized during their batch
window.

By using a revised compression strategy, they were able
to offload 90% of the CPU to the zIIP engine without
impacting the already fully utilized general CPs. Thus,
they were able to compress the file in approximately
1 elapsed minute and reduce the file size from 3GB to
300MB (FIGURE 4). It then only took less than 30 minutes
to transfer the 300MB file to the partner using the exist-
ing file transfer step they had in place. They were able
to reduce a process that was taking well over 5 hours
down to 30 minutes, and comfortably met their 3 hour
service level agreement with the partner. They did all

3GB File FTP

Unix Server

FIGURE 3

Overall 5 hours elapsed
time over a T1 (1.5 Mbps)
without compression

8

z Performance Guide

this without having to increase the chargeable capacity
of their z10-BC, which would have meant costs for the
hardware upgrade as well as software charges for the
increased capacity.

Adding compression to a file transfer workflow does not
require sophisticated modifications or program changes.
The level of abstraction is at the file level and the file or
files can be compressed at the penultimate step before
transmission.

Managed file transfer programs on z/OS provide option-
al file compression, but typically do so very inefficiently.
z/OS managed file transfer programs provide a very
sophisticated and full featured facility, but they lack the
ability to compress using the zIIP specialty engine and
only utilize the general purpose CPs to perform Deflate
compression on the files.

ZEDC HARDWARE ASSISTED COMPRESSION

Earlier this year, IBM introduced a new PCIe card called
zEnterprise Data Compression (zEDC). This sole purpose
of this card is to perform deflate compression. It does
compression very quickly and scales nicely. The zEDC
requires some of the latest hardware and software
because it requires a zBC12 or a zEC12 with GA2 mi-
crocode. The zEDC also requires z/OS v2.1, which is the
latest version of z/OS that went GA in September 2013.

Like the zIIP special purpose engine, the zEDC is not
considered as chargeable capacity like a general CP,
but it can provide a very specialized workload capability
for compression. The zEDC is very similar to the Crypto
Express cards (CEX3C, CEX4C), which are also PCIe cards
that contain their own processor and perform special-

ized cryptographic work that is off board processing
from the CPs. The main function of the zEDC is to com-
press a buffer. Applications like PKZIP and SecureZIP for
z/OS v15 support compression with the zEDC. The zEDC
supports the Deflate compression algorithm, so the
compression that is done with the zEDC can be inflated
on other platforms that
support Deflate. The
zEDC is very scalable, and
provides a tremendous
amount of throughput
since many LPAR’s can
access the same zEDC and
most likely not saturate it. FIGURE 5: zEDC

3GB File Compressed
300MB File FTP

Unix ServerFIGURE 4

Overall
30 minutes
elapsed time
over 1.5 Mbps
with compression

9

z Performance Guide

ZEDC HARDWARE COMPRESSION IN FILE TRANSFER

A financial services company with a more significant
amount of data to send to their partners was also run-
ning on a z10-BC W05 (approximately 2000 MIPS in total)
with a zIIP specialty engine. They were missing their
SLAs for getting large reports to partners where they
had a 3 hour delivery window and it was taking 3 hours
to move 100 files totaling 5GB (FIGURE 6). This allowed no
room for error, and invariably, jobs fail and need to be
restarted. If there was just one error, they missed their
SLA. They were fined $1,000 for each missed SLA and
those fines were accumulating to about $10,000/month.
Their z10-BC was at peak capacity during the time they
needed to perform the file transfer to their partners
using Connect:Direct.

After compression was inserted into the workflow, they
were able to take advantage of their under utilized zIIP
special purpose engine and remove the burden of the
already taxed general CPs and compress the files to a
95% compression ratio, reducing the total size to 250MB
(FIGURE 7). The transfer now took only 15 elapsed min-
utes to compress the files and 10 minutes to transfer
the files. PKZIP was added as additional steps to the

existing file transfer job, without any changes to the ap-
plications creating the data itself. PKZIP integrates at the
file level abstraction layer. The process that was once
taking 3 hours now is reduced to 25 minutes. This allows
for a comfortable cushion for any restarts or delays they
might experience without missing their SLA’s. Because
90% of PKZIP’s overall CPU time was offloaded to their
zIIP engine, they had no need for additional capacity.

This customer was also on the IBM Early Ship Program
for the zBC12 running z/OS v2.1. Along with the zIIP
special purpose engine, they installed a zEDC. PKZIP
for z/OS v15 has the concept of a compression facility,
meaning it uses the most efficient compression facility
that is available in the environment they are running on.
It could use the zEDC, the zIIP or fall back to the default
software. Because of this, the customer did not have to
modify any of their existing JCL because PKZIP auto-de-
tected the zEDC and was able to take advantage of it.

In this use case, the zEDC was able to compress the
files down to a 70% compression ratio (FIGURE 8). That
is less than what was possible with the zIIP engine or

FIGURE 6

FIGURE 7 FIGURE 8

Partner

Partner

Partner

Partner

Report Files
(100 AT 5GB EA)

3 Hours

Report Files
(100 AT 5GB EA)

3 Hours

Report Files
(100 AT 5GB EA)

3 Hours

Report Files
(100 AT 5GB EA)

3 Hours

Partner Report Files
(100 AT 5GB EA)

95% Compression

25 Minutes
Partner Report Files

(100 AT 5GB EA)

70% Compression

14 Minutes

10

z Performance Guide

software-only because PKZIP has 9 levels of compression
and the zEDC only supports 1 level of compression.
The trade off is there is much more throughput on the
zEDC, so the overall elapsed time is reduced to about
1 elapsed minute. The additional size means that it
takes 13 minutes to transfer the data, as opposed to 10
minutes. Overall, the 3 hours that were reduced to 25
minutes are now further reduced to about 14 minutes.
This allows for many restarts and delays without missing
any SLAs. Like the zIIP, this approach does not place any
computational burden on the general CPs.

The following is a discussion about addition strategies
for creating efficient use of bandwidth.

Data file transmissions typically extend across multiple
operating environments such as mainframe-to-UNIX/
Linux/Windows® Server/Desktop, mainframe-to-main-
frame, and mainframe-to-IBM i. PKZIP and SecureZIP for
z/OS are built to support the EBCDIC-to-EBCDIC and EBC-
DIC-to-ASCII data translation that is crucial to the format-
ting and processing of data exchanged across platforms.
By default PKZIP and SecureZIP will auto-detect the input
data format and perform any necessary data translation.
However, the following best practices should be consid-
ered when deploying PKZIP or SecureZIP as part of your
data transmissions.

›› Mainframe-to-Mainframe/IBM i

(EBCDIC-to-EBCDIC)
Eliminate data translation during
the compression routine.

•• Specify BINARY or BINBLK as the DATA_TYPE
•• Use SAVE_LRECL(Y)

Using these parms/settings will allow PKZIP and
SecureZIP to retain the native EBCDIC format of the
data and DCB attributes. This will also eliminate any
CPU overhead related to auto-detecting if the input
datasets need to be translated to ASCII during data
compression.

›› Mainframe-to-Server/Desktop (EBCDIC-to-ASCII)

Eliminate data translation during the compression
routine.

•• Specify TEXT as the DATA_TYPE
•• Modify DATA_DELIMITER to consider the UNIX/
Linux (0A) or Windows (0D0A) carriage return life
feed options

•• Add FILE_TERMINATOR() so there’s no file termi-
nator at the end of the data stream

By specifying the TEXT option, PKZIP and SecureZIP
do not have wasted cycles to decipher whether the
data should be translated to ASCII, or stay as EBCDIC,
eliminating unwanted CPU overhead.

PKZIP and SecureZIP for z/OS also provide users the
ability to rename input and output datasets in antic-
ipation of the respective destination platform. When
transmitting between mainframe environments, the
sending/receiving environments will likely have different
high-level qualifiers and node structures. So users can
utilize the following parameters to rename input/output
datasets to an environment friendly HLQ and/or DSN …

•• ZIPPED_DSN (PKZIP)

•• UNZIPPED_DSN (PKUNZIP)

These parms have been essential for clients exchanging
data between a mainframe and UNIX/Linux/Windows
infrastructure that support long filenames. With dataset
names capable of 8 character nodes, decompressing a
file received from a Windows environment typically will
not have the DSN node structure, but instead have a lon-
ger filename with an extension (i.e. Client_A_Report.csv).
The UNZIPPED_DSN parm allows users to rename the
received file during decompression to an IBM friendly
DSN/node structure (i.e. APP.CLIENTA.REPORT.CSV). The
same is possible in the opposite direction, allowing users
to rename the input DSN to a UNIX/Linux/Windows
friendly filename during the compression routine.

11

z Performance Guide

Improved Data Storage

 Compression using the zEDC differs from compression
using the zIIP in that workload targeted for the zEDC is
guaranteed to execute on the zEDC. The zIIP is designed
so that a program can work with z/OS to have a portion
of its enclave service request block (SRB) work directed
to it. For example, compression workloads are those
executing in enclave SRBs which are eligible for zIIP. The
z/OS Workload Manager (WLM) determines whether the
enclave SRB work should be processed by the zIIP.

As the zEDC only requires a negligible amount of general
processing, there isn’t the same capacity burden that
compression once placed on a mainframe environment’s
general CP. Files that need to be archived can be com-
pressed so that they have a very small footprint either
on mainframe storage or off mainframe storage such as
a NAS.

Storing all the metadata about a file being compressed
in a ZIP archive itself, for instance, means extracting that
same file at a later time does not require the file first be
allocated before it is extracted. PKZIP can take the meta-
data, such as the DCB (LRECL, BLKSIZE, DSORG), SPACE
or SMS information, and perform dynamic allocation of
the dataset and then extract the data in the same step
automatically.

There is an interesting performance benefit of storing
metadata in an archive format like ZIP for z/OS data.
Any type of mainframe data can be archived anywhere,
including public cloud storage, such as Amazon S3.

As another example, due to compliance and regulatory
purposes, a mainframe customer was required to store
their proprietary transaction logs for several years.
These logs were stored in a VSAM ESDS and each day
they produced approximately 80GB (approximately 2TB
a month). It seemed rare that they would ever need to
access the data, but for regulatory purposes they need-
ed to retain the data.

They had been storing the data on tape which required
about one 3592 tape each week. Using an archive format
like ZIP, provides the alternative of retaining these
archives to disk rather than to tape. The customer did
not have to keep any hardware around for the time the
old media would expire from a compliance perspective.
Retaining the information on disk allows them to be
flexible in terms of where the data is retained and allows
it to be moved easily. And, storing it in the ZIP format
with PKZIP allows the data to be extracted on any of the
other major platforms for later use while meeting the
compliance requirement.

FIGURE 9

100MB100MB 100MB

20MB

100MB

2

12

z Performance Guide

Mainframe datasets like VSAM ESDS’s can be stored
in an archive, where all the metadata about the VSAM
dataset is stored in the archive, and then transported to
any platform, including cloud storage such as Amazon
S3. Because the data was being stored in public cloud
storage, the customer needed to encrypt the data using
AES 256-bit encryption. This provides protection for the
data even in the public cloud.

If the VSAM ESDS ever needs to be extracted with Se-
cureZIP, there is no need to pre-allocate the VSAM ESDS
with IDCAMS. Given that the metadata about the VSAM
dataset is in the archive, SecureZIP is able to perform
dynamic allocation for the VSAM dataset just prior to
extraction.

APPLICATION INTEGRATION

Most of the time abstracting at the file level is the sim-
plest and most straight forward way to include compres-
sion and encryption. This is because this approach does
not require any program changes and does not alter the
existing workflow of information; it simply augments it.

In the case where performance is critical, file abstrac-
tion might not be the best choice. Instead, modifying
programs to interface with compression and encryption
facilities at a binary abstraction rather than a file abstrac-
tion interface will be more effective. Virtual Objects is a
way to achieve significantly higher level of performance.

The Virtual Objects Interface extends the Basic Call Mode
interface by allowing the use of memory objects in the
place of ZIP archive files and application data or files.
You can combine file-based processing Basic Call Mode
with Virtual Objects mode to gain flexibility and per-
formance, but processing ZIP data directly from and to
memory objects allows the allocation to process without

the overhead of file based archives and application data.
Various combinations of file objects and memory objects
make this interface much more flexible and can easily
satisfy many different application requirements. Multiple
objects can be processed in a single call to ZIP which can
produce a significant reduction in elapsed time. Addi-
tionally, extended status information is also available to
the application through the interface providing runtime
statistics and error information.

This diagram illustrates how using the file level abstrac-
tion Interface, the application data that resides in DB2
must be compressed, encrypted and sent to another
application or end user, in this case via MQ Series.
The data retrieved by DB2 must be written to a data
set. SecureZIP is then called to compress and encrypt
that data set into an archive. Then the archive is read
by the application program and placed in an MQ data
buffer which is then sent to its destination by MQ Series
services. This introduces 4 sets of file I/O’s for each of

FIGURE 10

File-based SecureZIP
Application Model

Qwery
Result

Application
1. SQL Retrieval 7. MQSeries

Put Message

3. Call
SecureZIP 6. Read Archive2. Write Data

4. Read Data 5. Write Archive

Result Data ZIP Archive

DB2 Transfer
Message

MQ

13

z Performance Guide

ARCHIVING BEST PRACTICES

When archiving datasets, the most efficient compression performance is gained by again eliminating any data
translation during the compression routine. To do so, the user should specify BINARY as the DATA_TYPE, as well as
the SAVE_LRECL parameter set to YES (Y). Leveraging these parms/settings will allow PKZIP and SecureZIP to retain
the native EBCDIC format of the data and DCB attributes, and eliminate any CPU overhead related to auto-detect-
ing if the input datasets need to be translated. By retaining the EBCDIC structure and DCB attributes during data
compression, there is no need to pre-allocate the datasets prior to them being decompressed. PKZIP and SecureZIP
automatically detect the attributes, using them to restore the output dataset(s) to their original state (BLKSIZE,
LRECL, RECFM, etc.). As noted above, the UNZIPPED_DSN can be leveraged to modify the output DSN as necessary
upon decompression of the datasets stored inside of the ZIP container.

the archive sessions. This is a very simple model which
works, but could be improved by reducing the number
of I/O’s.

Using the Virtual Objects Interface, the memory area
containing the DB2 SQL result is passed directly to
SecureZIP by placing the memory address of the data in
a virtual object. SecureZIP is called via a standard pro-

gram call. It processes the data and places the resulting
archive in the memory location addressed in a second
object that was passed on the call. Archive size infor-
mation is passed back to the calling program via a third
object; the session object. This implementation allows
SecureZIP to utilize existing application memory areas
and eliminate 4 of the 7 steps above in the file abstrac-
tion example.

A global logistics company was transferring thousands
of file manifests for their international shipments to the
tune of about 5,000 individual file transfers a day. In
those transfers, there was a mean time between failure
of approximately 2,500 file transfers or about two fail-
ures a day. The more file transfers, the more room for
error and the more transmission failures. When a failure
occurred a Production Support Analyst would need to
investigate the error and restart the transfer with the

appropriate restart parameters so the file transfers
could continue processing.

This customer installed PKZIP for z/OS and batched up
the files they needed to transfer into 25 files per 1 ZIP
file. Because they were able to compress the files, the
size of the files to transfer was much smaller. More
significantly, the possibility of transfer failures was cut
from daily occurrences to a few times a month.

Ease of File Management3

Qwery
Result

Application
1. SQL Retrieval 3. MQSeries

Put Message

2. Call
SecureZIP 4. Read Archive2. Write Data

3a. Read Data 3b. Write Archive

Result Data ZIP Archive

DB2 Transfer
Message

MQ

PK
VOBJ

PK
VOBJ

FIGURE 11

Object-based SecureZIP
Application Model

14

z Performance Guide

INTEROPERABILITY BEST PRACTICES

Movement of data between operating platforms is standard in today’s IT infrastructure. Even though the data for-
mat (EBCDIC vs. ASCII) may differ, the integrity of the data needs to be consistent. PKZIP and SecureZIP support the
interoperability between operating environments, allowing ASCII-based users to extract and process data received
from a mainframe or vise versa. As noted above with the File Transfer Best Practices, the following parameters
should be reviewed and modified accordingly:

›› DATA_TYPE

›› DATA_DELIMITER

›› FILE_TERMINATOR

›› ZIPPED_DSN or UNZIPPED_DSN

Efficient Use of Transfer Between Platforms

FILE MANAGEMENT BEST PRACTICES

Whether your data files are stored on the current mainframe environment, or transferred to others, it’s important
to understand the size and type of the data being added to the ZIP archive. PKZIP/SecureZIP can compress tens of
thousands of files into a single ZIP container as detailed above, but there are also performance considerations to
make when doing so.

›› Specify DATA_TYPE(BINARY) when working with image files that are already in a compressed state (i.e. JPEG, TIF)
This eliminates any data translation attempts against files that will not need the EBCDIC-to-ASCII translation per-
formed, saving CPU and elapsed time.

›› Specify COMPRESSION_METHOD(STORE) when working with image files that are already in a compressed state or
smaller dataset sizes (i.e. 1KB to 5KB)
STORE mode performs no compression against datasets, and can reduce CPU utilization and wall clock time when
working with datasets that are already compressed or are very small in size.

We worked with an international financial services and
banking company who needed to provide hundreds of
files from their z/OS system to a variety of Open Systems
platforms including Windows Server, Linux and AIX on a
daily basis. They had been running regular file transfers
of these files which was a costly (elapsed and CPU time)
and cumbersome step.

Compression support for z/OS means that when com-
pressing a file, approximately 90% of the CPU workload

is zIIP eligible and only 10% is processed by the general
CP's. Once the initial cost of the special purpose engine
has been paid for, more processing can be put on that
engine – and the data center operator has less to deal
with. With a resource that is able to read and write
directly to UNIX file system supported files, those files
were written directly to NFS mounted file systems that
the Open Systems platforms were able to consume
immediately.

4

Copyright © 2013 PKWARE, Inc. and its licensors. All rights reserved. PKWARE and Viivo are registered trademarks of PKWARE, Inc. Trademarks of other
companies mentioned in this documentation appear for identification purposes only and are property of their respective companies.

CORPORATE HEADQUARTERS
648 N. Plankinton Ave.
Suite 220
Milwaukee, WI 53203
1.800.219.7290

UK / EMEA
Building 3 Chiswick Park Chiswick High Road,
London W4 5YA
United Kingdom
+44 (0) 208 899 6060

Summary

Compression can now be performed on the IBM zIIP special purpose en-

gine as well as the zEDC. Compression can be inserted into existing work

flow and reduce the overall time it takes to transfer files.

Mainframe datasets when archived in a format like ZIP, can be stored in

any storage platform, not restricted to only the mainframe, and without

any dependency on hardware. Should you ever need to restore the con-

tents to the mainframe, dynamic allocation will automatically restore the

data to its original contents.

To ease the complexity of many files, hardware assisted ZIP compression

and encryption provides the ability to aggregate many files into a single

file, easing the burden of managing too many objects.

ZIP is like a portable file system, in that it allows files to be compressed

and encrypted, utilizing the most efficient software and hardware and

consumed on any platform.

Adding compression and encryption is the most straightforward abstract-

ing at the file level, because it does not require any program changes, and

does not alter the existing workflow of information; it simply augments

it. In the case where high performance is critical, program modification

using Virtual Objects to interface with compression and encryption facil-

ities a binary abstraction to achieve a significantly higher level of perfor-

mance.

Widespread adoption of compression and encryption are possible now

on z/OS without needing to increase the MSU capacity of your machine.

Instead, you can use assistance from hardware through the zIIP and zEDC

for compression, and CPACF and the Crypto Express cards for encryption.

FOR MORE INFORMATION ON IMPROVING DATA CENTER PERFORMANCE IN YOUR ORGANIZATION, CONTACT PKWARE—800.219.7290

